Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell Rep ; 43(4): 114022, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568806

RESUMO

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.

2.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315173

RESUMO

Streptococcus pneumoniae is a major cause of invasive disease of young children in low- and middle-income countries. In southern India, pneumococcal conjugate vaccines (PCVs) that can prevent invasive pneumococcal disease began to be used more frequently after 2015. To characterize pneumococcal evolution during the early time period of PCV uptake in southern India, genomes were sequenced and selected characteristics were determined for 402 invasive isolates collected from children <5 years of age during routine surveillance from 1991 to 2020. Overall, the prevalence and diversity of vaccine type (VT) and non-vaccine type (NVT) isolates did not significantly change post-uptake of PCV. Individually, serotype 1 and global pneumococcal sequence cluster (GPSC or strain lineage) 2 significantly decreased, whereas serotypes 6B, 9V and 19A and GPSCs 1, 6, 10 and 23 significantly increased in proportion post-uptake of PCV. Resistance determinants to penicillin, erythromycin, co-trimoxazole, fluoroquinolones and tetracycline, and multidrug resistance significantly increased in proportion post-uptake of PCV and especially among VT isolates. Co-trimoxazole resistance determinants were common pre- and post-uptake of PCV (85 and 93 %, respectively) and experienced the highest rates of recombination in the genome. Accessory gene frequencies were seen to be changing by small amounts across the frequency spectrum specifically among VT isolates, with the largest changes linked to antimicrobial resistance determinants. In summary, these results indicate that as of 2020 this pneumococcal population was not yet approaching a PCV-induced equilibrium and they highlight changes related to antimicrobial resistance. Augmenting PCV coverage and prudent use of antimicrobials are needed to counter invasive pneumococcal disease in this region.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Vacinas Conjugadas , Combinação Trimetoprima e Sulfametoxazol , Metagenômica , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Índia/epidemiologia
3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045275

RESUMO

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.

4.
Antimicrob Agents Chemother ; 67(3): e0074922, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36744906

RESUMO

Resistance-nodulation-division (RND) superfamily efflux pumps promote antibiotic resistance in Gram-negative pathogens, but their role in Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) is undocumented. However, recent in vitro selections for resistance of S. aureus to an antimicrobial fatty acid, linoleic acid, and an antibiotic, rhodomyrtone, identified H121Y and C116R substitution variants, respectively, in a TetR family regulator, FarR, promoting increased expression of the RND pump FarE. Hypothesizing that in vivo selection pressures have also promoted the emergence of FarR variants, we searched available genome data and found that strains with FarRH121Y from human and bovine hosts have emerged sporadically in clonal complexes (CCs) CC1, CC30, CC8, CC22, and CC97, whereas multiple FarR variants have occurred within CC5 hospital-associated (HA)-MRSA. Of these, FarRE160G and FarRE93EE were exclusive to CC5, while FarRC116Y, FarRP165L, and FarRG166D also occurred in nonrelated CCs, primarily from bovine hosts. Within CC5, FarRC116Y and FarRG166D strains were polyphyletic, each exhibiting two emergence events. FarRC116Y and FarRE160G were individually sufficient to confer increased expression of FarE and enhanced resistance to linoleic acid (LA). Isolates with FarRE93EE were most closely related to S. aureus N315 MRSA and exhibited increased resistance independently of FarRE93EE. Accumulation of pseudogenes and additional polymorphisms in FarRE93EE strains contributed to a multiresistance phenotype which included fosfomycin and fusidic acid resistance in addition to increased linoleic acid resistance. These findings underscore the remarkable adaptive capacity of CC5 MRSA, which includes the polyphyletic USA100 lineage of HA-MRSA that is endemic in the Western hemisphere and known for the acquisition of multiple resistance phenotypes.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Bovinos , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
5.
J Clin Microbiol ; 61(3): e0141222, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36840569

RESUMO

Staphylococcus epidermidis infections can be challenging to diagnose due to the species frequent contamination of clinical specimens and indolent course of infection. Nevertheless, S. epidermidis is the major cause of late-onset sepsis among premature infants and of intravascular infection in all age groups. Prior work has shown that bacterial virulence factors, antimicrobial resistances, and strains have up to 80% in-sample accuracy to distinguish hospital from community sources, but are unable to distinguish true bacteremia from blood culture contamination. Here, a phylogeny-informed genome-wide association study of 88 isolates was used to estimate effect sizes of particular genomic variants for isolation sources. A "polygenic score" was calculated for each isolate as the summed effect sizes of its repertoire of genomic variants. Predictive models of isolation sources based on polygenic scores were tested with in-samples and out-samples from prior studies of different patient populations. Polygenic scores from accessory genes (AGs) distinguished hospital from community sources with the highest accuracy to date, up to 98% for in-samples and 65% to 91% for various out-samples, whereas scores from single nucleotide polymorphisms (SNPs) had lower accuracy. Scores from AGs and SNPs achieved the highest in-sample accuracy to date, up to 76%, in distinguishing infection from contaminant sources within a hospital. Model training and testing data sets with more similar population structures resulted in more accurate predictions. This study reports the first use of a polygenic score for predicting a complex bacterial phenotype and shows the potential of this approach for enhancing S. epidermidis diagnosis.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Humanos , Staphylococcus epidermidis/genética , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Estudo de Associação Genômica Ampla , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Genômica , Coagulase/genética
6.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234816

RESUMO

Aim: Streptococcus pneumoniae (Spn) acquires genes for macrolide resistance, MEGA or ermB, in the human host. These genes are carried either in the chromosome, or on integrative conjugative elements (ICEs). Here, we investigated molecular determinants of the acquisition of macrolide resistance. Methods and Results: Whole genome analysis was conducted for 128 macrolide-resistant pneumococcal isolates to identify the presence of MEGA (44.5%, 57/128) or ermB (100%), and recombination events in Tn916-related elements or in the locus comCDE encoding competence genes. Confocal and electron microscopy studies demonstrated that, during the acquisition of macrolide resistance, pneumococcal strains formed clusters of varying size, with the largest aggregates having a median size of ~1600 µm2. Remarkably, these pneumococcal aggregates comprise both encapsulated and nonencapsulated pneumococci, exhibited physical interaction, and spanned extracellular and intracellular compartments. We assessed the recombination frequency (rF) for the acquisition of macrolide resistance by a recipient D39 strain, from pneumococcal strains carrying MEGA (~5.4 kb) in the chromone, or in large ICEs (>23 kb). Notably, the rF for the acquisition of MEGA, whether in the chromosome or carried on an ICE was similar. However, the rF adjusted to the acquisition of the full-length ICE (~52 kb), compared to that of the capsule locus (~23 kb) that is acquired by transformation, was three orders of magnitude higher. Finally, metabolomics studies revealed a link between the acquisition of ICE and the metabolic pathways involving nicotinic acid and sucrose. Conclusions: Extracellular and intracellular pneumococcal clusters facilitate the acquisition of full-length ICE at a rF higher than that of typical transformation events, involving distinct metabolic changes that present potential targets for interventions.

7.
Microbiol Spectr ; 10(3): e0000922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35583495

RESUMO

Numerous host and environmental factors contribute to persistent and intermittent nasal Staphylococcus aureus carriage in humans. The effects of worsening glycemia on the odds of S. aureus intermittent and persistent nasal carriage was established in two cohorts from an adult Mexican American population living in Starr County, Texas. The anterior nares were sampled at two time points and the presence of S. aureus determined by laboratory culture and spa-typing. Persistent carriers were defined by the presence of S. aureus of the same spa-type at both time points, intermittent carriers were S. aureus-positive for 1 of 2 swabs, and noncarriers were negative for S. aureus at both time points. Diabetes status was obtained through personal interview and physical examination that included a blood draw for the determination of percent glycated hemoglobin A1c (%HbA1c), fasting plasma glucose, and other blood chemistry values. Using logistic regression and general estimating equations, the odds of persistent and intermittent nasal carriage compared to noncarriers across the glycemic spectrum was determined controlling for covariates. Increasing fasting plasma glucose and %HbA1c in the primary and replication cohort, respectively, were significantly associated with increasing odds of S. aureus intermittent, but not persistent nasal carriage. These data suggest that increasing dysglycemia is a risk factor for intermittent S. aureus nasal carriage potentially placing those with poorly controlled diabetes at an increased risk of acquiring an S. aureus infection. IMPORTANCE Factors affecting nasal S. aureus colonization have been studied primarily in the context of persistent carriage. In contrast, few studies have examined factors affecting intermittent nasal carriage with this pathogen. This study demonstrates that the odds of intermittent but not persistent nasal carriage of S. aureus significantly increases with worsening measures of dysglycemia. This is important in the context of poorly controlled diabetes since the risk of becoming colonized with one of the primary organisms associated with diabetic foot infections can lead to increased morbidity and mortality.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Adulto , Glicemia , Portador Sadio/epidemiologia , Hemoglobinas Glicadas , Humanos , Americanos Mexicanos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
8.
Trends Microbiol ; 30(11): 1036-1044, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35597716

RESUMO

Tuberculosis (TB) remains a leading infectious cause of death worldwide. Reducing TB infections and TB-related deaths rests ultimately on stopping forward transmission from infectious to susceptible individuals. Critical to this effort is understanding how human host mobility shapes the transmission and dispersal of new or existing strains of Mycobacterium tuberculosis (Mtb). Important questions remain unanswered. What kinds of mobility, over what temporal and spatial scales, facilitate TB transmission? How do human mobility patterns influence the dispersal of novel Mtb strains, including emergent drug-resistant strains? This review summarizes the current state of knowledge on mobility and TB epidemic dynamics, using examples from three topic areas, including inference of genetic and spatial clustering of infections, delineating source-sink dynamics, and mapping the dispersal of novel TB strains, to examine scientific questions and methodological issues within this topic. We also review new data sources for measuring human mobility, including mobile phone-associated movement data, and discuss important limitations on their use in TB epidemiology.


Assuntos
Epidemias , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/uso terapêutico , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia
9.
Microbiol Resour Announc ; 10(42): e0083521, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34672696

RESUMO

The viridans streptococci are a group of bacteria that are commensals of the oral cavity and pharynx. These species tend to cause severe cases of bacterial endophthalmitis with poor prognoses but remain largely uncharacterized in this context. Here, we report the whole-genome sequences of 21 strains of viridans streptococci isolated from endophthalmitis in humans.

10.
mSphere ; 6(5): e0053821, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34523979

RESUMO

Preterm infants are at increased risk of infections caused by coagulase-negative staphylococci (CoNS) that colonize skin. Technical barriers in sequencing low-microbial-biomass skin swabs from preterm infants hinder attempts to gain a strain-level understanding of CoNS colonization dynamics within their developing skin microbiome. Here, the microbiome of five skin sites and available stool was studied from four preterm infants hospitalized over their first 2 months of life. We used propidium monoazide treatment of samples to enrich for the viable microbiome and metagenomic shotgun sequencing to resolve species and strains. The microbiome of different skin sites overlapped with each other, was dominated by the CoNS species Staphylococcus epidermidis and Staphylococcus capitis, and was distinct from stool. Species diversity on skin increased over time despite antibiotic exposure. Evidence of antagonism between the most common S. epidermidis strains, ST2 and ST59, included negative relationships for species correlation networks and in situ replication rates and that ST2 colonized skin earlier but was often replaced by ST59 over time. Experiments done with reference isolates showed that ST2 produced more biofilm than ST59 on plastic surfaces, which was reduced in mixed culture. We also discovered that a rare S. epidermidis strain, ST5, grew rapidly in stool in association with Stenotrophomonas maltophilia from a suspected episode of infection. Viability treatment of samples and moderate throughput shotgun sequencing provides strain-level information about CoNS colonization dynamics of preterm infant skin that ultimately might be exploited to prevent infections. IMPORTANCE The skin is a habitat for microbes that commonly infect preterm infants, but the use of sequencing for fine-scale study of the microbial communities of skin that develop in these infants has been limited by technical barriers. We treated skin swabs of preterm infants with a photoreactive dye that eliminates DNA from nonviable microbes and then sequenced the remaining DNA. We found that two strains of the most common species, Staphylococcus epidermidis, showed an antagonistic relationship on skin by cooccurring with different species, replicating fastest in different samples, and dominating skin sites at different times. Representatives of these strains also differed in their ability to stick to plastic surfaces-an important pathogenicity trait of this species. Our study shows the feasibility of gaining detailed information about strain colonization dynamics from this difficult-to-sequence body site of preterm infants, which might be used to guide novel approaches to prevent infections.


Assuntos
Recém-Nascido Prematuro , Pele/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/fisiologia , DNA Bacteriano/análise , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Lactente , Metagenoma , Metagenômica/métodos
11.
Sci Rep ; 10(1): 18932, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144660

RESUMO

Streptococcus pneumoniae (pneumococcus) is a principal cause of bacterial middle ear infections, pneumonia, and meningitis. Capsule-targeted pneumococcal vaccines have likely contributed to increased carriage of nonencapsulated S. pneumoniae (NESp). Some NESp lineages are associated with highly efficient DNA uptake and transformation frequencies. However, NESp strains lack capsule that may increase disease severity. We tested the hypothesis that NESp could acquire capsule during systemic infection and transform into more virulent pneumococci. We reveal that NESp strains MNZ67 and MNZ41 are highly transformable and resistant to multiple antibiotics. Natural transformation of NESp when co-administered with heat-killed encapsulated strain WU2 in a murine model of systemic infection resulted in encapsulation of NESp and increased virulence during bacteremia. Functional capsule production increased the pathogenic potential of MNZ67 by significantly decreasing complement deposition on the bacterial surface. However, capsule acquisition did not further decrease complement deposition on the relatively highly pathogenic strain MNZ41. Whole genome sequencing of select transformants demonstrated that recombination of up to 56.7 kbp length occurred at the capsule locus, along with additional recombination occurring at distal sites harboring virulence-associated genes. These findings indicate NESp can compensate for lack of capsule production and rapidly evolve into more virulent strains.


Assuntos
Cápsulas Bacterianas/genética , Farmacorresistência Bacteriana , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Animais , Antibacterianos/farmacologia , Bacteriemia , Modelos Animais de Doenças , Camundongos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade , Transformação Bacteriana , Virulência , Sequenciamento Completo do Genoma
12.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816729

RESUMO

Coagulase-negative staphylococci (CoNS) are a common etiology of serious and recurrent infections in immunocompromised patients. Although most isolates appear susceptible to vancomycin, a single strain might have a subpopulation of resistant bacteria. This phenomenon is termed heteroresistance and may adversely affect the response to treatment. A retrospective cohort study was performed of pediatric patients with leukemia treated at St. Jude Children's Research Hospital who developed CoNS central line-associated bloodstream infection (CLABSI). Available isolates were sequenced and tested for vancomycin heteroresistance by population analysis profiling. Risk factors for heteroresistance and the association of heteroresistance with treatment failure (death or relapse of infection) or poor clinical response to vancomycin therapy (treatment failure or persistent bacteremia after vancomycin initiation) were evaluated. For 65 participants with CoNS CLABSI, 62 initial isolates were evaluable, of which 24 (39%) were vancomycin heteroresistant. All heteroresistant isolates were of Staphylococcus epidermidis and comprised multiple sequence types. Participants with heteroresistant bacteria had more exposure to vancomycin prophylaxis (P = 0.026) during the 60 days prior to infection. Of the 40 participants evaluable for clinical outcomes, heteroresistance increased the risk of treatment failure (P = 0.012) and poor clinical response (P = 0.001). This effect persisted after controlling for identified confounders. These data indicate that vancomycin heteroresistance is common in CoNS isolates from CLABSIs in pediatric patients with leukemia and is associated with poor clinical outcomes. Validation of these findings in an independent cohort and evaluation of alternative antibiotic therapy in patients with heteroresistant infections have the potential to improve care for serious CoNS infections.


Assuntos
Bacteriemia , Sepse , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Criança , Coagulase , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Sepse/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/uso terapêutico
13.
Microbes Infect ; 22(10): 540-549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32758644

RESUMO

Defects in innate immunity affect many different physiologic systems and several studies of patients with primary immunodeficiency disorders demonstrated the importance of innate immune system components in disease prevention or colonization of bacterial pathogens. To assess the role of the innate immune system on nasal colonization with Staphylococcus aureus, innate immune responses in pediatric S. aureus nasal persistent carriers (n = 14) and non-carriers (n = 15) were profiled by analyzing co-clustered gene sets (modules). We stimulated previously frozen peripheral blood mononuclear cells (PBMCs) from these subjects with i) a panel of TLR ligands, ii) live S. aureus (either a mixture of strains or stimulation with respective carriage isolates), or iii) heat-killed S. aureus. We found no difference in responses between carriers and non-carriers when PBMCs were stimulated with a panel of TLR ligands. However, PBMC gene expression profiles differed between persistent and non-S. aureus carriers following stimulation with either live or dead S. aureus. These observations suggest that individuals susceptible to persistent carriage with S. aureus may possess differences in their live/dead bacteria recognition pathway and that innate pathway signaling is different between persistent and non-carriers of S. aureus.


Assuntos
Portador Sadio/imunologia , Leucócitos Mononucleares/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Portador Sadio/microbiologia , Criança , Feminino , Humanos , Imunidade Inata , Masculino , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Transcriptoma
14.
mBio ; 10(6)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772058

RESUMO

The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana Múltipla , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Antibacterianos/farmacologia , Ásia/epidemiologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/transmissão , Evolução Molecular , Genoma Bacteriano , Humanos , Índia , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Filogenia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
15.
Proc Natl Acad Sci U S A ; 116(46): 23284-23291, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659018

RESUMO

Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.


Assuntos
Evolução Molecular , Tuberculose Extensivamente Resistente a Medicamentos/genética , Mycobacterium tuberculosis/genética , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Genoma Bacteriano , Infecções por HIV/complicações , Humanos , Filogenia , Filogeografia , Estudos Prospectivos , África do Sul/epidemiologia , Sequenciamento Completo do Genoma
16.
Front Microbiol ; 9: 1901, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186248

RESUMO

Clonal complex 5 methicillin-resistant Staphylococcus aureus (CC5-MRSA) includes multiple prevalent clones that cause hospital-associated infections in the Western Hemisphere. Here, we present a phylogenomic study of these MRSA to reveal their phylogeny, spatial and temporal population structure, and the evolution of selected traits. We studied 598 genome sequences, including 409 newly generated sequences, from 11 countries in Central, North, and South America, and references from Asia and Europe. An early-branching CC5-Basal clade is well-dispersed geographically, is methicillin-susceptible and MRSA predominantly of ST5-IV such as the USA800 clone, and includes separate subclades for avian and porcine strains. In the early 1970s and early 1960s, respectively, two clades appeared that subsequently underwent major expansions in the Western Hemisphere: a CC5-I clade in South America and a CC5-II clade largely in Central and North America. The CC5-I clade includes the ST5-I Chilean/Cordobes clone, and the ST228-I South German clone as an early offshoot, but is distinct from other ST5-I clones from Europe that nest within CC5-Basal. The CC5-II clade includes divergent strains of the ST5-II USA100 clone, various other clones, and most known vancomycin-resistant strains of S. aureus, but is distinct from ST5-II strain N315 from Japan that nests within CC5-Basal. The recombination rate of CC5 was much lower than has been reported for other S. aureus genetic backgrounds, which indicates that recurrence of vancomycin resistance in CC5 is not likely due to an enhanced promiscuity. An increased number of antibiotic resistances and decreased number of toxins with distance from the CC5 tree root were observed. Of note, the expansions of the CC5-I and CC5-II clades in the Western Hemisphere were preceded by convergent gains of resistance to fluoroquinolone, macrolide, and lincosamide antibiotics, and convergent losses of the staphylococcal enterotoxin p (sep) gene from the immune evasion gene cluster of phage ϕSa3. Unique losses of surface proteins were also noted for these two clades. In summary, our study has determined the relationships of different clades and clones of CC5 and has revealed genomic changes for increased antibiotic resistance and decreased virulence associated with the expansions of these MRSA in the Western Hemisphere.

17.
Artigo em Inglês | MEDLINE | ID: mdl-29456969

RESUMO

Selection pressures exerted on Staphylococcus aureus by host factors may lead to the emergence of mutants better adapted to the evolving conditions at the infection site. This study was aimed at identifying the changes that occur in S. aureus exposed to the host defense mechanisms during chronic osteomyelitis and evaluating whether these changes affect the virulence of the organism. Genome assessment of two S. aureus isolates collected 13 months apart (HU-85a and HU-85c) from a host with chronic osteomyelitis was made by whole genome sequencing. Agr functionality was assessed by qRT-PCR. Isolates were tested in a rat model of osteomyelitis and the bacterial load (CFU/tibia) and the morphometric osteomyelitic index (OI) were determined. The ability of the isolates to trigger the release of proinflammatory cytokines was determined on macrophages in culture. Persistence of S. aureus within the host resulted in an agrC frameshift mutation that likely led to the observed phenotype. The capacity to cause bone tissue damage and trigger proinflammatory cytokines by macrophages of the agr-deficient, unencapsulated derivative (HU-85c) was decreased when compared with those of the isogenic CP8-capsulated parental strain (HU-85a). By comparison, no significant differences were found in the bacterial load or the OI from rats challenged with isogenic Reynolds strains [CP5, CP8, and non-typeable (NT)], indicating that lack of CP expression alone was not likely responsible for the reduced capacity to cause tissue damage in HU-85c compared with HU-85a. The production of biofilm was significantly increased in the isogenic derivative HU-85c. Lack of agr-dependent factors makes S. aureus less virulent during chronic osteomyelitis and alteration of the agr functionality seems to permit better adaptation of S. aureus to the chronically infected host.


Assuntos
Adaptação Biológica/genética , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Mutação , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Transativadores/genética , Animais , Carga Bacteriana , Biofilmes , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Ratos , Adulto Jovem
18.
mBio ; 9(1)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295910

RESUMO

The USA300 North American epidemic (USA300-NAE) clone of methicillin-resistant Staphylococcus aureus has caused a wave of severe skin and soft tissue infections in the United States since it emerged in the early 2000s, but its geographic origin is obscure. Here we use the population genomic signatures expected from the serial founder effects of a geographic range expansion to infer the origin of USA300-NAE and identify polymorphisms associated with its spread. Genome sequences from 357 isolates from 22 U.S. states and territories and seven other countries are compared. We observe two significant signatures of range expansion, including decreases in genetic diversity and increases in derived allele frequency with geographic distance from the Pennsylvania region. These signatures account for approximately half of the core nucleotide variation of this clone, occur genome wide, and are robust to heterogeneity in temporal sampling of isolates, human population density, and recombination detection methods. The potential for positive selection of a gyrA fluoroquinolone resistance allele and several intergenic regions, along with a 2.4 times higher recombination rate in a resistant subclade, is noted. These results are the first to show a pattern of genetic variation that is consistent with a range expansion of an epidemic bacterial clone, and they highlight a rarely considered but potentially common mechanism by which genetic drift may profoundly influence bacterial genetic variation.IMPORTANCE The process of geographic spread of an origin population by a series of smaller populations can result in distinctive patterns of genetic variation. We detect these patterns for the first time with an epidemic bacterial clone and use them to uncover the clone's geographic origin and variants associated with its spread. We study the USA300 clone of methicillin-resistant Staphylococcus aureus, which was first noticed in the early 2000s and subsequently became the leading cause of skin and soft tissue infections in the United States. The eastern United States is the most likely origin of epidemic USA300. Relatively few variants, which include an antibiotic resistance mutation, have persisted during this clone's spread. Our study suggests that an early chapter in the genetic history of this epidemic bacterial clone was greatly influenced by random subsampling of isolates during the clone's geographic spread.


Assuntos
Epidemias , Variação Genética , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Filogeografia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Evolução Molecular , Genoma Bacteriano , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Epidemiologia Molecular , Análise de Sequência de DNA , Estados Unidos
19.
LGBT Health ; 4(5): 345-351, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29022859

RESUMO

PURPOSE: The aims of this cross-sectional study were to determine the prevalence of Staphylococcus aureus nasal colonization, evaluate community-related behavioral risk factors, and utilize staphylococcal protein A (spa) typing for epidemiological surveillance among community-based men who have sex with men from the National HIV Behavioral Surveillance System in Houston, Texas. METHODS: Descriptive methods and logistic analyses were used to determine associations with nasal colonization. RESULTS: The prevalence of S. aureus colonization was 29.7%; of these, 3.0% were colonized with methicillin-resistant S. aureus. Logistic analyses revealed that anal intercourse practices were associated with colonization (P < 0.05). A diverse population of 38 spa types was identified. CONCLUSION: Our findings suggest that an association among preferential sex practices, condom use, and S. aureus colonization exists and should be investigated further.


Assuntos
Pesquisa Participativa Baseada na Comunidade/métodos , Homossexualidade Masculina/estatística & dados numéricos , Nariz , Infecções Estafilocócicas/epidemiologia , Proteína Estafilocócica A , Adulto , Estudos Transversais , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Prevalência , Assunção de Riscos , Staphylococcus aureus/isolamento & purificação
20.
Mob Genet Elements ; 7(4): 1-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932624

RESUMO

Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus, which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (ICEs) has been mostly overlooked. Experimental work demonstrating the activity of ICEs in staphylococci remained frozen for years after initial work in the 1980s that showed Tn916 was capable of transfer from Enterococcus to Staphylococcus. However, recent work has begun to thaw this field. To date, 2 families of ICEs have been identified among staphylococci - Tn916 that includes the Tn5801 subfamily, and ICE6013 that includes at least 7 subfamilies. Both Tn5801 and ICE6013 commonly occur in clinical strains of S. aureus. Tn5801 is the most studied of the Tn916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli, inhibits restriction barriers to incoming DNA. ICE6013 is among the shortest known ICEs, but it still includes many uncharacterized open reading frames. This element uses an IS30-like transposase as its recombinase, providing some versatility in integration sites. ICE6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn5801. Continued study of these mobile genetic elements may reveal the full extent to which ICEs impact horizontal gene transfer and the evolution of staphylococci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...